Data Structure: Binary Search Tree(BST) in JavaScript and TypeScript

Binary Search Tree or BST is a special type of tree that is used for organizing data in a way that searching becomes easier. The rule is simple for BST-

  • Everything on the left of the node is smaller than the selected node.
  • Everything on the right of the node is larger than the selected node.
Binary Search Tree(BST)
Binary Search Tree(BST)

NOTE

In this article, we are discussing in detail, the implementation of Binary Search Tree(BST) in JavaScript and TypeScript.

Check the link below to check the details of Binary Search Tree(BST)-

Implementation #1: Simple Implementation

Let’s go with the simple approach, to implement Binary Search tree-

Step #1: Node Class

class Node {
  constructor(value) {
    this.value = value;
    this.left = null;
    this.right = null;
  }
}
class Node<T> {
  private data: T;
  private left: Node<T> | null;
  private right: Node<T> | null;

  constructor(data: T) {
    this.data = data;
    this.left = null;
    this.right = null;
  }

  public getData(): T {
    return this.data;
  }

  public getLeft(): Node<T> | null {
    return this.left;
  }

  public setLeft(left: Node<T>): void {
    this.left = left;
  }

  public getRight(): Node<T> | null {
    return this.right;
  }

  public setRight(right: Node<T>): void {
    this.right = right;
  }
}

Step #2: BinarySearchTree Class

class BinarySearchTree {
  constructor() {
    this.root = null;
  }
}
class BinarySearchTree<T> {
  private root: Node<T> | null;

  constructor() {
    this.root = null;
  }
}

Step #3: Insert Operation

class BinarySearchTree {
  //...

  insert(data) {
    const newNode = new Node(data);

    // If there is no root, then make new node as head
    if (!this.root) {
      this.root = newNode;
      return this;
    }

    let currentNode = this.root;

    while (currentNode) {
      // If node with same data already exists
      // then do nothing
      if(data === currentNode.data) break;

      // If data is smaller then go left
      if (data < currentNode.data) {
        // If the left is empty
        // then insert this new node on the left
        if (!currentNode.left) {
          currentNode.left = newNode;

          break;
        }

        // If there is node on the left
        // then go to the left node
        currentNode = currentNode.left;
      } else {
        // If data is larger then go right

        // If no node on then right
        // then insert on right
        if (!currentNode.right) {
          currentNode.right = newNode;
          break;
        }

        // If there is node on the right
        // then go to the right node
        currentNode = currentNode.right;
      }
    }

    return this;
  }

  //...
}

class BinarySearchTree<T> {
  //...
  
  insert(data: T) {
    const newNode = new Node(data);

    // If there is no root, then make new node as head
    if (!this.root) {
      this.root = newNode;
      return this;
    }

    let currentNode: Node<T> | null = this.root;

    while (currentNode) {
      // If node with same data already exists
      // then do nothing
      if (data === currentNode.getData()) break;

      // If data is smaller then go left
      if (data < currentNode.getData()) {
        // If the left is empty
        // then insert this new node on the left
        if (!currentNode.getLeft()) {
          currentNode.setLeft(newNode);

          break;
        }

        // If there is node on the left
        // then go to the left node
        currentNode = currentNode.getLeft();
      } else {
        // If data is larger then go right

        // If no node on then right
        // then insert on right
        if (!currentNode.getRight()) {
          currentNode.setRight(newNode);
          break;
        }

        // If there is node on the right
        // then go to the right node
        currentNode = currentNode.getRight();
      }
    }

    return this;
  }
}

Step #4: Search Operation

class BinarySearchTree {
  //...

  search(data) {
    let currentNode = this.root;

    while(currentNode) {
      // console.log(currentNode.data);
      if (data === currentNode.data) {
        return currentNode;
      }

      if (data < currentNode.data) {
        currentNode = currentNode.left;
      } else {
        currentNode = currentNode.right;
      }
    }

    return currentNode;
  }
}
class BinarySearchTree<T> {
  //...

  search(data: T) {
    let currentNode = this.root;

    while (currentNode) {
      // console.log(currentNode.data);
      if (data === currentNode.getData()) {
        return currentNode;
      }

      if (data < currentNode.getData()) {
        currentNode = currentNode.getLeft();
      } else {
        currentNode = currentNode.getRight();
      }
    }

    return currentNode;
  }
}

Full Source Code

class Node {
  constructor(data) {
    this.data = data;
    this.left = null;
    this.right = null;
  }
}

class BinarySearchTree {
  constructor() {
    this.root = null;
  }

  insert(data) {
    const newNode = new Node(data);

    // If there is no root, then make new node as head
    if (!this.root) {
      this.root = newNode;
      return this;
    }

    let currentNode = this.root;

    while (currentNode) {
      // If node with same data already exists
      // then do nothing
      if(data === currentNode.data) break;

      // If data is smaller then go left
      if (data < currentNode.data) {
        // If the left is empty
        // then insert this new node on the left
        if (!currentNode.left) {
          currentNode.left = newNode;

          break;
        }

        // If there is node on the left
        // then go to the left node
        currentNode = currentNode.left;
      } else {
        // If data is larger then go right

        // If no node on then right
        // then insert on right
        if (!currentNode.right) {
          currentNode.right = newNode;
          break;
        }

        // If there is node on the right
        // then go to the right node
        currentNode = currentNode.right;
      }
    }

    return this;
  }

  search(data) {
    let currentNode = this.root;

    while(currentNode) {
      // console.log(currentNode.data);
      if (data === currentNode.data) {
        return currentNode;
      }

      if (data < currentNode.data) {
        currentNode = currentNode.left;
      } else {
        currentNode = currentNode.right;
      }
    }

    return currentNode;
  }
}

export default BinarySearchTree;
// bst.ts
// Binary search tree implementation in TypeScript

class Node<T> {
  private data: T;
  private left: Node<T> | null;
  private right: Node<T> | null;

  constructor(data: T) {
    this.data = data;
    this.left = null;
    this.right = null;
  }

  public getData(): T {
    return this.data;
  }

  public getLeft(): Node<T> | null {
    return this.left;
  }

  public setLeft(left: Node<T>): void {
    this.left = left;
  }

  public getRight(): Node<T> | null {
    return this.right;
  }

  public setRight(right: Node<T>): void {
    this.right = right;
  }
}

class BinarySearchTree<T> {
  private root: Node<T> | null;

  constructor() {
    this.root = null;
  }

  insert(data: T) {
    const newNode = new Node(data);

    // If there is no root, then make new node as head
    if (!this.root) {
      this.root = newNode;
      return this;
    }

    let currentNode: Node<T> | null = this.root;

    while (currentNode) {
      // If node with same data already exists
      // then do nothing
      if (data === currentNode.getData()) break;

      // If data is smaller then go left
      if (data < currentNode.getData()) {
        // If the left is empty
        // then insert this new node on the left
        if (!currentNode.getLeft()) {
          currentNode.setLeft(newNode);

          break;
        }

        // If there is node on the left
        // then go to the left node
        currentNode = currentNode.getLeft();
      } else {
        // If data is larger then go right

        // If no node on then right
        // then insert on right
        if (!currentNode.getRight()) {
          currentNode.setRight(newNode);
          break;
        }

        // If there is node on the right
        // then go to the right node
        currentNode = currentNode.getRight();
      }
    }

    return this;
  }

  search(data: T) {
    let currentNode = this.root;

    while (currentNode) {
      // console.log(currentNode.data);
      if (data === currentNode.getData()) {
        return currentNode;
      }

      if (data < currentNode.getData()) {
        currentNode = currentNode.getLeft();
      } else {
        currentNode = currentNode.getRight();
      }
    }

    return currentNode;
  }
}

export default BinarySearchTree;

Demo

// demo.js
import BinarySearchTree from "./bst.js";

// Create a new Stack
let bigboxBST = new BinarySearchTree();

console.log("nn----------- BST insert example -----------n");

// Push items
console.log('Insert - 100 | Result: ', bigboxBST.insert(100));
console.log('Insert - 40 | Result: ', bigboxBST.insert(40));
console.log('Insert - 60 | Result: ', bigboxBST.insert(60));
console.log('Insert - 190 | Result: ', bigboxBST.insert(190));
console.log('Insert - 110 | Result: ', bigboxBST.insert(110));
console.log('Insert - 150 | Result: ', bigboxBST.insert(150));
console.log('Insert - 120 | Result: ', bigboxBST.insert(120));
console.log('Insert - 100 | Result: ', bigboxBST.insert(100));


console.log(bigboxBST);

console.log("nn----------- BST search example -----------n");


console.log(bigboxBST.search(150));
// demo.ts
import BinarySearchTree from "./bst";

// Create a new Stack
let bigboxBST = new BinarySearchTree<number>();

console.log("nn----------- BST insert example -----------n");

// Push items
console.log('Insert - 100 | Result: ', bigboxBST.insert(100));
console.log('Insert - 40 | Result: ', bigboxBST.insert(40));
console.log('Insert - 60 | Result: ', bigboxBST.insert(60));
console.log('Insert - 190 | Result: ', bigboxBST.insert(190));
console.log('Insert - 110 | Result: ', bigboxBST.insert(110));
console.log('Insert - 150 | Result: ', bigboxBST.insert(150));
console.log('Insert - 120 | Result: ', bigboxBST.insert(120));
console.log('Insert - 100 | Result: ', bigboxBST.insert(100));


console.log(bigboxBST);

console.log("nn----------- BST search example -----------n");

console.log(bigboxBST.search(150));
console.log(bigboxBST.search(130));
console.log(bigboxBST.search(60));

Output:

----------- BST insert example -----------

Insert - 100 | Result:  BinarySearchTree { root: Node { data: 100, left: null, right: null } }
Insert - 40 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: null },
    right: null
  }
}
Insert - 60 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: null
  }
}
Insert - 190 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: null, right: null }
  }
}
Insert - 110 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}
Insert - 150 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}
Insert - 120 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}
Insert - 100 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}
BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}


----------- BST search example -----------

Node {
  data: 150,
  left: Node { data: 120, left: null, right: null },
  right: null
}

Implementation #2: With Recursion

In this approach we are using recursion in our code, to make the code easier to implement and read-

Step #1: Node Class

The Node class will be same. We have no change here.

class Node {
  constructor(value) {
    this.value = value;
    this.left = null;
    this.right = null;
  }
}
class Node<T> {
  private data: T;
  private left: Node<T> | null;
  private right: Node<T> | null;

  constructor(data: T) {
    this.data = data;
    this.left = null;
    this.right = null;
  }

  public getData(): T {
    return this.data;
  }

  public getLeft(): Node<T> | null {
    return this.left;
  }

  public setLeft(left: Node<T>): void {
    this.left = left;
  }

  public getRight(): Node<T> | null {
    return this.right;
  }

  public setRight(right: Node<T>): void {
    this.right = right;
  }
}

Step #2: BinarySearchTree Class

The BinarySearchTree has the same property as the simple approach, no change here.

class BinarySearchTree {
  constructor() {
    this.root = null;
  }
}
class BinarySearchTree<T> {
  private root: Node<T> | null;

  constructor() {
    this.root = null;
  }
}

Step #3: Insert Operation

class BinarySearchTree {
  //...

  // Main insert function to initialize the insertion
  insert(data) {
    const newNode = new Node(data);

    if (this.root === null) {
      this.root = newNode;
    } else {
      this.insertNode(this.root, newNode);
    }

    return this;
  }

  // Insertion function to be called recursively
  insertNode(currentNode, newNode) {
    // If data is smaller, then go left
    if (newNode.data < currentNode.data) {
      // If left is empty then insert the new node here
      if (currentNode.left === null) {
        currentNode.left = newNode;
      } else {
        // Go even further if there are nodes on the left
        this.insertNode(currentNode.left, newNode); // Recursive call
      }
    } else {
      // If data is larger, then go right
      if (currentNode.right === null) {
        currentNode.right = newNode;
      } else {
        // Go right if there are nodes on right
        this.insertNode(currentNode.right, newNode); // Recursive call
      }
    }
  }

  //...
}
class BinarySearchTree<T> {
   //....

  // Main insert function to initialize the insertion
  insert(data: T) {
    const newNode = new Node(data);

    // Insertion function to be called recursively
    const insertNode = (currentNode: Node<T> | null, newNode: Node<T>) => {
      if (currentNode === null) return;

      // If data is smaller, then go left
      if (newNode.getData() < currentNode.getData()) {
        // If left is empty then insert the new node here
        if (currentNode.getLeft() === null) {
          currentNode.setLeft(newNode);
        } else {
          // Go even further if there are nodes on the left
          insertNode(currentNode.getLeft(), newNode); // Recursive call
        }
      } else {
        // If data is larger, then go right
        if (currentNode.getRight() === null) {
          currentNode.setRight(newNode);
        } else {
          // Go right if there are nodes on right
          insertNode(currentNode.getRight(), newNode); // Recursive call
        }
      }
    };

    if (this.root === null) {
      this.root = newNode;
    } else {
      insertNode(this.root, newNode);
    }

    return this;
  }
}

Step #4: Search Operation

class BinarySearchTree {
  //...

  // Main search function
  search(data) {
    return this.searchNode(this.root, data);
  }

  // Search function to be called recursively
  searchNode(currentNode, data) {
    // If the node is null, that means we have reached some end
    // and still have not found any node with the provided data
    if (currentNode === null) {
      return null;
    }

    // Go left if data is samller
    if (data < currentNode.data) {
      return this.searchNode(currentNode.left, data); // Recursive call
    }

    // Go right if data is larger
    if (data > currentNode.data) {
      return this.searchNode(currentNode.right, data); // Recursive call
    }

    return currentNode;
  }
}
class BinarySearchTree<T> {
  //...

  // Main search function
  search(data: T): Node<T> | null {
    // Search function to be called recursively
    const searchNode = (currentNode: Node<T> | null, data: T): Node<T> | null => {
      // If the node is null, that means we have reached some end
      // and still have not found any node with the provided data
      if (currentNode === null) {
        return null;
      }

      // Go left if data is samller
      if (data < currentNode.getData()) {
        return searchNode(currentNode.getLeft(), data); // Recursive call
      }

      // Go right if data is larger
      if (data > currentNode.getData()) {
        return searchNode(currentNode.getRight(), data); // Recursive call
      }

      return currentNode;
    };

    return searchNode(this.root, data);
  }
}

Full Source Code

// bst.js
// Binary search tree implementation with in JavaScript

class Node {
  constructor(data) {
    this.data = data;
    this.left = null;
    this.right = null;
  }
}

class BinarySearchTree {
  constructor() {
    this.root = null;
  }

  // Main insert function to initialize the insertion
  insert(data) {
    const newNode = new Node(data);

    if (this.root === null) {
      this.root = newNode;
    } else {
      this.insertNode(this.root, newNode);
    }

    return this;
  }

  // Insertion function to be called recursively
  insertNode(currentNode, newNode) {
    // If data is smaller, then go left
    if (newNode.data < currentNode.data) {
      // If left is empty then insert the new node here
      if (currentNode.left === null) {
        currentNode.left = newNode;
      } else {
        // Go even further if there are nodes on the left
        this.insertNode(currentNode.left, newNode); // Recursive call
      }
    } else {
      // If data is larger, then go right
      if (currentNode.right === null) {
        currentNode.right = newNode;
      } else {
        // Go right if there are nodes on right
        this.insertNode(currentNode.right, newNode); // Recursive call
      }
    }
  }

  // Main search function
  search(data) {
    return this.searchNode(this.root, data);
  }

  // Search function to be called recursively
  searchNode(currentNode, data) {
    // If the node is null, that means we have reached some end
    // and still have not found any node with the provided data
    if (currentNode === null) {
      return null;
    }

    // Go left if data is samller
    if (data < currentNode.data) {
      return this.searchNode(currentNode.left, data); // Recursive call
    }

    // Go right if data is larger
    if (data > currentNode.data) {
      return this.searchNode(currentNode.right, data); // Recursive call
    }

    return currentNode;
  }
}

export default BinarySearchTree;
// bst.ts
// Binary search tree implementation with in TypeScript

class Node<T> {
  private data: T;
  private left: Node<T> | null;
  private right: Node<T> | null;

  constructor(data: T) {
    this.data = data;
    this.left = null;
    this.right = null;
  }

  public getData(): T {
    return this.data;
  }

  public getLeft(): Node<T> | null {
    return this.left;
  }

  public setLeft(left: Node<T>): void {
    this.left = left;
  }

  public getRight(): Node<T> | null {
    return this.right;
  }

  public setRight(right: Node<T>): void {
    this.right = right;
  }
}

class BinarySearchTree<T> {
  private root: Node<T> | null;

  constructor() {
    this.root = null;
  }

  // Main insert function to initialize the insertion
  insert(data: T) {
    const newNode = new Node(data);

    // Insertion function to be called recursively
    const insertNode = (currentNode: Node<T> | null, newNode: Node<T>) => {
      if (currentNode === null) return;

      // If data is smaller, then go left
      if (newNode.getData() < currentNode.getData()) {
        // If left is empty then insert the new node here
        if (currentNode.getLeft() === null) {
          currentNode.setLeft(newNode);
        } else {
          // Go even further if there are nodes on the left
          insertNode(currentNode.getLeft(), newNode); // Recursive call
        }
      } else {
        // If data is larger, then go right
        if (currentNode.getRight() === null) {
          currentNode.setRight(newNode);
        } else {
          // Go right if there are nodes on right
          insertNode(currentNode.getRight(), newNode); // Recursive call
        }
      }
    };

    if (this.root === null) {
      this.root = newNode;
    } else {
      insertNode(this.root, newNode);
    }

    return this;
  }

  // Main search function
  search(data: T): Node<T> | null {
    // Search function to be called recursively
    const searchNode = (currentNode: Node<T> | null, data: T): Node<T> | null => {
      // If the node is null, that means we have reached some end
      // and still have not found any node with the provided data
      if (currentNode === null) {
        return null;
      }

      // Go left if data is samller
      if (data < currentNode.getData()) {
        return searchNode(currentNode.getLeft(), data); // Recursive call
      }

      // Go right if data is larger
      if (data > currentNode.getData()) {
        return searchNode(currentNode.getRight(), data); // Recursive call
      }

      return currentNode;
    };

    return searchNode(this.root, data);
  }
}

export default BinarySearchTree;

Demo

// demo.js
import BinarySearchTree from "./bst.js";

// Create a new Stack
let bigboxBST = new BinarySearchTree();

console.log("nn----------- BST insert example -----------n");

// Push items
console.log('Insert - 100 | Result: ', bigboxBST.insert(100));
console.log('Insert - 40 | Result: ', bigboxBST.insert(40));
console.log('Insert - 60 | Result: ', bigboxBST.insert(60));
console.log('Insert - 190 | Result: ', bigboxBST.insert(190));
console.log('Insert - 110 | Result: ', bigboxBST.insert(110));
console.log('Insert - 150 | Result: ', bigboxBST.insert(150));
console.log('Insert - 120 | Result: ', bigboxBST.insert(120));
console.log('Insert - 100 | Result: ', bigboxBST.insert(100));


console.log(bigboxBST);


console.log("nn----------- BST search example -----------n");

console.log(bigboxBST.search(150));
console.log(bigboxBST.search(130));
console.log(bigboxBST.search(60));
// demo.ts
import BinarySearchTree from "./bst";

// Create a new Stack
let bigboxBST = new BinarySearchTree<number>();

console.log("nn----------- BST insert example -----------n");

// Push items
console.log('Insert - 100 | Result: ', bigboxBST.insert(100));
console.log('Insert - 40 | Result: ', bigboxBST.insert(40));
console.log('Insert - 60 | Result: ', bigboxBST.insert(60));
console.log('Insert - 190 | Result: ', bigboxBST.insert(190));
console.log('Insert - 110 | Result: ', bigboxBST.insert(110));
console.log('Insert - 150 | Result: ', bigboxBST.insert(150));
console.log('Insert - 120 | Result: ', bigboxBST.insert(120));
console.log('Insert - 100 | Result: ', bigboxBST.insert(100));


console.log(bigboxBST);


console.log("nn----------- BST search example -----------n");

console.log(bigboxBST.search(150));
console.log(bigboxBST.search(130));
console.log(bigboxBST.search(60));

Output:

----------- BST insert example -----------

Insert - 100 | Result:  BinarySearchTree { root: Node { data: 100, left: null, right: null } }
Insert - 40 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: null },
    right: null
  }
}
Insert - 60 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: null
  }
}
Insert - 190 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: null, right: null }
  }
}
Insert - 110 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}
Insert - 150 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}
Insert - 120 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}
Insert - 100 | Result:  BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}
BinarySearchTree {
  root: Node {
    data: 100,
    left: Node { data: 40, left: null, right: [Node] },
    right: Node { data: 190, left: [Node], right: null }
  }
}


----------- BST search example -----------

Node {
  data: 150,
  left: Node { data: 120, left: null, right: null },
  right: null
}
null
Node { data: 60, left: null, right: null }

Time Complexity

OperationComplexity
InsertO(log(n))
SearchO(log(n))

Source Code

Use the following links to get the source code used in this article-

Related Data Structures

CommandDetails
Singly Linked List Singly Linked List Detail

Other Code Implementations

Use the following links to check the Binary Search Tree(BST) implementation in other programming languages-

Leave a Comment


The reCAPTCHA verification period has expired. Please reload the page.